a thoughtful web.
Good ideas and conversation. No ads, no tracking.   Login or Take a Tour!
comment
q-  ·  3983 days ago  ·  link  ·    ·  parent  ·  post: Spherical Ice Fallacy

Yes, I understand what you're saying, and I think I see where our understanding of the problem posed is different. I do appreciate everything you're saying, as you are clearly the right person to consult on this.

I believe that you are looking to model the entire response of the melting ice. As in, at time t1, the state of melt is X, at time t2 the state of melt is Y, etc. A full set of curves for temperature and amount of ice melted at any given time. A difficult problem to solve, for sure - I would use a computer model to solve this one.

My approach is different. I'm just trying to show that the amount of ice melted taking fluid from T1 down to T2 will be the same regardless of the shape of the ice. The time that it takes to get from T1 to T2 will be longer for the ball than the cube, so one could claim that "the ball of ice melts slower" - which is true, but the amount of ice that has melted by the time the temperature reaches T2 (the drinking temperature) will be the same. Furthermore, the rate of melting once the liquid has reached the melting temperature of ice (~0C) will be the same for either shape of ice.

And as far as me saying "all else being equal" that's how you address a given claim. I'm not wishing it so, I'm setting it as the parameters of the problem so I can address the claim of "it melts less because it has less surface area." It's not my claim. And there's no point in comparing A to B if you're going to have a bunch of other factors that are different. If the admen said "it melts less because it's only half in the drink," I'd have set up a problem around that claim. (But since I'm challenging shape, I might want to compare a sphere half in compared to a cube half in.)

As for the formula being the correct one, it is. I learned it in my high school Chem 1 class my freshman year, and it is still used today. In fact, you'll notice the same formula in the Enthalpy of Fusion wiki link.

In fairness, yeah, one could argue that all those Newtonian physics formulas are dead wrong over-simplifications now that one has taken a relativity course, but for validating a claim that there is a difference in A to B it should be a perceivable difference. The small stone and large stone dropped off a tower may not accelerate at exactly 9.8m/s/s and may not hit at exactly the same time, but most people would agree it's close enough; the small stone does not fall faster.